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Abstract. In the present paper, we study the magnetic properties of bilayer cuprate antiferromagnets.
In order to evaluate the expressions for spin-wave dispersion, sublattice magnetization, Néel temperature
and the magnetic contribution to the specific heat, the double time Green’s function technique has been
employed in the random phase approximation (RPA). The spin wave dispersion curve for a bilayer anti-
ferromagnetic system is found to consist of one acoustic and one optic branch. The “optical magnon gap”
has been attributed solely to the intra-bilayer exchange coupling (J⊥) as its magnitude does not change
significantly with the inter-bilayer exchange coupling (Jz). However Jz is essential to obtain the acoustic
mode contribution to the magnetization. The numerical calculations show that the Néel temperature (TN)
of the bilayer antiferromagnetic system increases with the Jz and a small change in Jz gives rise to a
large change in the Néel temperature of the system. The magnetic specific heat of the system follows a T 2

behaviour but in the presence of Jz it varies faster than T 2.

PACS. 75.30.-m Intrinsic properties of magnetically ordered materials – 74.72.Bk Y-based cuprates –
75.10.Jm Quantized spin models

1 Introduction

In the undoped state, the cuprate superconductors like
La2CuO4, and YBa2Cu3O6 (123) are layered antiferro-
magnetic (AFM) insulators. Due to their layered structure
these systems possess anisotropy in many of their physi-
cal properties. The La2CuO4 system has only one CuO2

plane per unit cell. The magnetic properties in the in-
sulating phase of this material can be well described by
the Heisenberg model with in-plane AFM exchange cou-
pling (J‖) and inter unit cell exchange coupling (Jz) [1–8].
On the other hand, YBa2Cu3O6 has two layers per unit
cell and the electronic states of these CuO2 layers are
strongly coupled right from the undoped to overdoped
phase [9–13]. Therefore unlike single layered La2CuO4 sys-
tem the study of magnetic dynamics of bilayer system re-
quires extra attention.

It has been observed in YBa2Cu3O6+x, that the intra-
bilayer coupling (J⊥) leads towards the presence of an
acoustic and an optic mode in the magnon dispersion and
a magnon gap of the order of 65–70 meV [14]. It has
also been observed [15] that inter-bilayer exchange cou-
pling (Jz) is important to establish long range order (3D
Néel ordering) in these systems and plays a significant role
in the magnetic dynamics.

Several theoretical efforts have been made to inves-
tigate the normal state magnetic properties of cuprate
systems. These calculations mainly deal with the single
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layer and two-sublattice models within the random phase
approximation [1,2], spin-waves [3], the Callen decou-
pling scheme [4] and the Schwinger boson approach [6,7].
By contrast, to date, theoretical studies for the bilayer
cuprates have been performed by considering the in-
plane and the intra-bilayer exchange coupling only. Millis
et al. [16,17] have calculated the dynamical susceptibility
of these systems within the Schwinger boson technique.
They estimated that the intra-bilayer exchange coupling
strength (J⊥) is about 14 meV. Du et al. [18] have shown
that in the absence of intra- or inter- bilayer exchange
coupling the system does not show long range magnetic
order and the Néel temperature vanishes.

More recently, we have discussed the magnetic dynam-
ics of a bilayer antiferromagnetic system (YBa2Cu3O6+x)
within linear spin wave approximation [15]. In this study,
we consider in-plane and intra-bilayer exchange coupling
in the model Hamiltonian while the role of inter-bilayer ex-
change coupling was introduced phenomenologically. We
have examined the role of the optic and acoustic magnetic
excitations on the magnetic dynamics of bilayer systems
and found that in the absence of anisotropy, the acoustic
mode may not sustain magnetization.

In view of this, in the present paper, we incorporate the
effects of inter-bilayer exchange coupling explicitly into
the microscopic model Hamiltonian and plan to study its
role on the magnetic properties of bilayer cuprates. We
employ Green’s function formalism [19] for a four sublat-
tice model within the random phase approximation and



154 The European Physical Journal B

H = J‖
X

i6=j,α6=β
[SiaαSjbα + SjaαSibα + SicαSjdα + SjcαSidα]

+ J⊥
X
i,α6=β

[SiaαSicβ + SiaβSicα + SibαSidβ + SibβSidα]

+ Jz
X
i,α6=β
δ′

[SiaαSi+δ′cβ + SiaβSi+δ′cα + SibαSi+δ′dβ + SibβSi+δ′dα] ,

obtain expressions for sublattice magnetization, Néel tem-
perature and magnetic specific heat for bilayer antiferro-
magnets. We organize the paper in the following way. The
theoretical formulation is presented in Section 2. Expres-
sions for staggered magnetization, Néel temperature and
magnetic specific heat are presented in Sections 3, 4, 5 re-
spectively. The numerical results and discussions are given
in Section 6.

2 Theoretical formulation

For bilayer systems, we define the Heisenberg antiferro-
magnetic Hamiltonian as:

H = J⊥
∑
i,j,α

SiαSjα + J⊥
∑
i,α

SiαSiβ + Jz
∑
i,δ′

SiαSi+δ′β .

(1)

In four sublattice model the above Hamiltonian can be
explicitly written as

see equation above

where, αβ = 1(2) are the layer indices, i, j denotes the
lattice sites with j is the nearest neighbour of i, δ is the
nearest neighbour distance within plane and δ′ is the dis-
tance between the two bilayers. The suffixes a, b, c and d
denote the four sublattices of the system. J‖ is the in-plane
exchange coupling and J⊥, Jz are intra- and inter-bilayer
exchange couplings respectively. A figure describing vari-
ous exchange couplings for a bilayer system with four basis
atoms (a, b, c, and d) is shown in Figure 1. We define for
this purpose the following Green’s functions

G1 = 〈〈S+
ia1;S−ia1〉〉 G2 = 〈〈S+

ib1;S−ia1〉〉
G3 = 〈〈S+

ic2;S−ia1〉〉 G4 = 〈〈S+
id2;S−ia1〉〉 (2)

where S± = Sx ± iSy are the spin raising and lowering
operators. The equation of motion for the Green’s function
〈〈S+

ia1;S−ia1〉〉 can be written as

ωG1 =
1

2π
〈 [
S+
ia1;S−ia1

] 〉
+
〈〈

[S+
ia1,H];S−ia1

〉〉
· (3)

Further, to solve the commutator shown in equation (3),
we use the following commutation rules[

Szlnα;S±l′n′α′
]

= ±δαα′δll′δnn′S±lnα

Fig. 1. A four sublattice model (a,b,c,d) of bilayer cuprates
with J‖ (in-plane exchange coupling), J⊥ (intra-bilayer cou-
pling) and Jz (inter-bilayer exchange coupling).

and [
S+

lnα;S−l′n′α′
]

= δαα′δll′δnn′(2Szlnα) (4)

where, l(l′) denote the lattice site, n(n′) denotes the sub-
lattices and α(α′) denotes the layer indices. We decouple
the equation (3) within the random phase approximation
using the following procedure

〈〈SzlnαS±l′n′α′ ;S−iaβ〉〉 = 〈Szlnα〉〈〈S±l′n′α′ ;S−iaβ〉〉 · (5)

The symmetry of the system allows

〈Szia1〉 = 〈Szid2〉 = −〈Szib1〉 = −〈Szic2〉 = S̄. (6)

We solve equation (3) using (4–6). Finally, we are left with
four coupled equations corresponding to various Green’s
function. These can be presented in the form of a matrix:

ω − ε −J1(k) −J2(k) 0

J1(k) ω + ε 0 J2(k)

J2(k) 0 ω + ε J1(k)

0 −J2(k) −J1(k) ω − ε





G1

G2

G3

G4


=



1/2π

0

0

0


(7)
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Fig. 2. Dispersion energy (ω) with wave vector k (kx = ky) and
small value of kzc with (a) R = 1×10−5 and (b) R = 5×10−3

for J‖ = 120 meV and r = 0.1.

where

J1(k) = 2J‖S̄Zabγ‖(k)

J2(k) = 2J⊥S̄ + 2JzS̄Zcγc(k)

ε = 2J‖S̄Zab + 2J⊥S̄ + 2JzS̄Zc.

with γ‖(k)= 1
Zab

∑ab
δ exp(ikδ), γc(k)= 1

Zc

∑c
δ′ exp(ikδ′).

Zab = 4 and Zc = 2 are the nearest neighbour in the
ab-plane and in the c-direction. The solution of equa-
tion (7) gives

ω2
1,2k =

(
ε2 −

[
J1(k)± J2(k)

]2)
. (8)

Substituting the values of J1(k) and J2(k), we obtain

ω1,2k = 2J‖S̄
[
(4 + r + 2R)2

−
{

2(cos kxa+ cos kya)± (r + 2R cos kzc)
}2
]1/2

,

(9)

with r = J⊥
/
J‖, R = Jz

/
J‖.

Here, the (+) sign corresponds to the acoustic while
the (−) sign corresponds to the optic mode in the excita-
tion spectrum. In Figure 2, we have plotted the dispersion
energies of the acoustic and optic modes for kx = ky =
k(−π/2a to π/2a) for different values of inter-bilayer ex-
change coupling. The magnitude of the calculated magnon
gap is ≈75 meV which is very close to the previously ob-
tained values (65−70 meV) [13–18]. The expression for
the magnon gap is modified due to the contribution of Jz
and reads Eg = 8S̄

√
J‖(J⊥ + 2Jz). We solve the set of

equations (7) and obtain Green’s function relevant to the
magnetic properties given by

G1 =
S̄

2π

∑
k

[
(ω + ε)

(ω2 − ω2
1k)

+
(ω + ε)

(ω2 − ω2
2k)

]
· (10)

Following the standard procedure of Zubarev [19], we
obtain the correlation function 〈S−S+〉 for the Green’s
function in equation (10) which may be written as

〈S−S+〉 =
S̄

N

∑
k

[
ε

2ω1k
coth(βω1k/2)

+
ε

2ω2k
coth(βω2k/2)− 1

]
. (11)

3 Staggered magnetization

In this section, we calculate magnetization of a bilayer an-
tiferromagnetic system. The magnetization may be evalu-
ated by using the relation

〈Sz〉 =
1
2
− 〈S−S+〉 (12)

where the correlation 〈S−S+〉 is given by equation (11)
and 〈Sz〉 gives the magnetization at temperature T which
reads

M(T ) =
1
2
− S̄

N

∑
k

[
ε

2ω1k
coth(βω1k/2)

+
ε

2ω2k
coth(βω2k/2)− 1

]
. (13)

We first consider the zero temperature correction to
the sublattice magnetization due to spin quantum fluctu-
ations. From equation (13) this comes out to be

M(0) =
1
2
− S̄

N

∑
k

[
ε

2ω1k
+

ε

2ω2k
− 1
]
. (14)

If in the above equations (13) and (14), we set S̄ = 1/2
and the inter-bilayer exchange coupling Jz = 0, this re-
duces to our previous results [15] of the spin wave approx-
imation. Furthermore, the expression for staggered mag-
netization is obtained from (13) and is given by

− δM(T ) = M(T )−M(0) = − S̄
N

×
∑
k

[
ε

ω1k (exp(βω1k)− 1)
+

ε

ω2k (exp(βω2k)− 1)

]
·

(15)

For very small values of intra- (r) and inter-bilayer (R)
exchange coupling ratio, the leading contribution to the
magnetization comes from the small k-values [2] and un-
der such condition we can approximate coskxa = 1 −
(kxa)2/2, cos kya = 1 − (kya)2/2. Further, we denote
(kxa)2 + (kya)2 = θ2

p and kzc = θz , and replace the sum-
mation over k-values by an integration. We finally obtain

δM =
(4 + r + 2R)S̄

2π2

[∫ π

−π
dθz
∫ ∞

0

θpdθp
ω1k (exp(βω1k)− 1)

+
∫ π

−π
dθz
∫ ∞

0

θpdθp
ω2k (exp(βω2k)− 1)

]
· (16)
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I1(ω) =

�
(lnR1/2 − 1)−

�
ln(8 + 2r + 3R)

2
− 1

�
−
�

(8 + 2r + 4R)1/2

2R1/2
ln

����R
1/2 + (8 + 2r + 4R)1/2

R1/2 − (8 + 2r + 4R)1/2

����
��

(4 + r + 2R)(4π2)
(20)

I2(ω) =

��
2− ln(2r + 4R+ 8)

2
+
�√

8R
�

tan−1

�
R1/2

2
√

2

��
−
�

(2r + 4R)1/2

2R1/2
ln

����R
1/2 + (2r + 4R)1/2

R1/2 − (2r + 4R)1/2

����
��

(4 + r + 2R)(4π2)
· (21)

We solve the above equation self consistently and calculate
the value of sublattice magnetization.

4 Néel temperature

The Néel temperature is obtained from equation (13) un-
der the condition T → TN; M(T ) → 0. Thus the Néel
temperature is given by

TN =
1
kB

[
J‖

(4 + r + 2R)I12(ω)

]
(17)

with I12(ω) =
1
N

∑
k

(
1
ω2

1k

+
1
ω2

2k

)
(18)

where ω1,2k is given by (9). We solve equation (18) by con-
verting the summation into an integration over k-values.
The analytical evaluation of I12(ω) may be written as

I12(ω) = I1(ω) + I2(ω) (19)

with

see equations (20) and (21) above.

Substituting values of I12(ω) into equation (17), we
calculate the Néel temperature for a bilayer system with
intra- and inter-bilayer contributions of the exchange cou-
plings.

5 Magnetic specific heat

In this section, we obtain an expression for the magnetic
contribution to the specific heat using the standard pro-
cedure,

CM(T ) =
∂U

∂T
· (22)

Here U is the internal energy of the system and at tem-
perature T this is given by

U =
∑
k

[
ω1k

(exp (βω1k)− 1)
+

ω2k

(exp (βω2k)− 1)

]
· (23)

Differentiating equation (23), with respect to temperature
and substituting the values of ω1k and ω2k from equa-
tion (9). We get

CM(T ) = CM1(T ) + CM2(T ) (24)

CM1(T ) =
∑
k

[
ω2

1k

kBT 2

exp (ω1k/kBT )

[exp (ω2
1k/kBT )− 1]2

]
(25)

CM2(T ) =
∑
k

[
ω2

2k

kBT 2

exp (ω2k/kBT )

[exp (ω2
2k/kBT )− 1]2

]
· (26)

Converting the summation over k-values into an integra-
tion, the above equations (25) and (26) can be evaluated as

CM1(T ) =
1

2π2

(
k2

BT
2

J2
‖ S̄

2

)∫ 1

−1

θz

∫ ∞
λ1

x3cosesh2xdx
a

(27)

CM2(T ) =
1

2π2

(
k2

BT
2

J2
‖ S̄

2

)∫ 1

−1

θz

∫ ∞
λ2

x3cosesh2xdx
c

(28)

with

λ1 = S̄b1/2/(2kBT )

λ2 = S̄d1/2/(2kBT )

and,

a = 2(4 + r + 2R cos θz)
b = 4R2(1− cos2 θz) + 4R(4 + r)(1− cos θz)
c = 2(4− r − 2r cos θz)
d = 16 + 4R2(1− cos2 θz)

+16R(1 + cos θz) + 4rR(1− cos θz).

Here, while calculating the magnetic contribution to
the specific heat at low temperatures, we have not con-
sidered the temperature dependence of S̄. Solving these
expressions numerically, we study the effect of intra- (r)
and inter-bilayer (R) exchange coupling on the magnetic
specific heat of a bilayer cuprates.

6 Results and discussion

We now present the numerical estimation of our ex-
pressions for the various magnetic properties i.e. stag-
gered magnetization, Néel temperature and magnetic spe-
cific heat for different values of in-plane and out-of-plane
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Fig. 3. Normalised magnetization (M(T )/M(0)) vs. temper-
ature (T ) for (a) R = 1 × 10−5 and (b) R = 0.1 with
J‖ = 120 meV and r = 0.1.

(intra- and inter-bilayer) antiferromagnetic exchange cou-
plings. Following earlier works [14–16], we set the in-plane
exchange coupling, J‖ = 120 meV, and the intra-bilayer
exchange coupling, J⊥ = 0.1J‖.

We plot reduced magnetization (M(T )/M(0)) vs. tem-
perature for different values of the ratio of inter-bilayer
exchange coupling to the in-plane coupling strength (R =
Jz/J‖) in Figure 3. It is clear from Figure 3, that on in-
creasing the strength of inter-bilayer coupling, magnetiza-
tion increases. This is in accord with the experimental
observations which suggest that inter-bilayer exchange
coupling (Jz) is essential to keep long range magnetic or-
der in these systems [9–11]. It also implies that in the ab-
sence of inter-bilayer exchange coupling (Jz) these bilayers
behave like a 2D-AFM system and the three-dimensional
natures of AFM cuprates cannot be achieved. It is also
observed that the magnetization does not change signifi-
cantly with intra-bilayer exchange coupling (J⊥).

We, next calculate the Néel temperature of these bi-
layer system numerically from equation (17). Dependence
of the Néel temperature on the weak interlayer coupling
has already been discussed [8] for single layer systems
but the effect of inter-bilayer exchange coupling in the
presence of intra-bilayer coupling has not been studied.
Recently, we have studied the effect of intra-bilayer ex-
change coupling on the Néel temperature [20], where the
contribution of inter-bilayer exchange coupling has been
treated phenomenologically in the model Hamiltonian.
Here in Figure 4, we plot Néel temperature vs. the ratio
of inter-bilayer exchange coupling to in-plane exchange
couplings (R) for J‖ = 100 meV and 120 meV, keeping
the intra-bilayer coupling fixed. It is clear from Figure 4
that on increasing the strength of in-plane or inter-bilayer
exchange couplings, the Néel temperature of the system
increases. We conclude from the Figure 4 that any small
change in inter-bilayer exchange coupling causes signifi-
cant change in the Néel temperature of the system.

Fig. 4. Néel temperature (TN) vs. inter-bilayer exchange cou-
pling (R) for (a) J‖ = 100 meV and (b) J‖ = 120 meV with
r = 0.1.

Fig. 5. Magnetic specific heat (CM) vs. temperature (T ) for
(a) R = 1 × 10−5 and (b) R = 1.0 with J‖ = 120 meV and
r = 0.1.

Finally, we plot magnetic specific heat of the bilayer
system for various values of the exchange coupling from
equation (24). The expression for specific heat clearly
shows a T 2 behaviour. In Figure 5, we plot the magnetic
specific heat vs. temperature for different values of the ra-
tio of inter-bilayer to in-plane exchange coupling (R). It is
clear from the figure that on increasing the inter-bilayer
exchange coupling the magnetic contribution to specific
heat increases. The magnetic specific heat shows a vari-
ation higher than T 2 as inter-bilayer exchange coupling
is considerable high (i.e. R = 1.0). It is also clear from
Figure 5 that at low temperatures the variation in the
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magnetic specific heat due to inter-bilayer exchange cou-
pling is very small. To calculate the magnetic contribution
to the specific heat at low temperature it is important to
consider the temperature dependence of magnatisation, in
fact, magnetisation varies as T 2 at low temperatures but
at high temperatures it follows a T lnT behaviour [6,15].
Hence it is important to study the magnetic contribution
to the specific heat at low temperature by taking the tem-
perature dependence of magnetisation into account.

It can be concluded that inter-bilayer exchange cou-
pling (Jz) however small, is essential to keep 3D long
range magnetic ordering in the system. Both the optic
and acoustic spin wave modes contribute towards the long
range magnetic order in the presence of inter-bilayer ex-
change coupling. On the other hand the magnon gap is not
very sensitive to the inter-bilayer exchange coupling (Jz).
This is because of the smallness of Jz in comparison to J⊥.
Moreover, one can infer from this that the magnon gap has
nothing to do with long range magnetic order in the bi-
layer systems. The magnetic specific heat shows a depen-
dence higher than T 2 as inter-bilayer exchange coupling
is introduced. Thus, the present investigation based on
RPA, clearly illustrates the importance of the role of Jz in
the magnetic dynamics of YBa2Cu3O6+x bilayer cuprates.
The bilayer cuprates behave in a quite different way to
single layered La2CuO4 system in the insulating AF mag-
netic phase and it will be interesting to extend the present
calculations to doped bilayer systems.
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